D3O® MATERIAL MATRIX

Understand the different features of the full range of D3O materials. A higher number indicates a greater performance in that feature.

ST - SF001

- Impact Protection: 5
- Density*: 2.5
- Durability: 2
- Temperature Stability: 1

Designed for markets, such as motorcycle and sports, where high impact energies are experienced.

XTI - SF005

- Impact Protection: 4.5
- Density*: 2.5
- Durability: 4
- Temperature Stability: 3

Soft, flexible and lightweight impact protection frequently used for motorcycle limb protectors and sport.

Aero - SF010

- Impact Protection: 4
- Density*: 4.5
- Durability: 1
- Temperature Stability: 1

A more lightweight version of ST, frequently used for helmet liners and back protectors.

Decell B - SF007

- Impact Protection: 3
- Density*: 2.5
- Durability: 5
- Temperature Stability: 4

Decell is the material of choice for insoles and heel inserts, as it offers maximum protection whilst providing a softer, lighter ride.

Decell TRUST - SF019

- Impact Protection: 3
- Density*: 4
- Durability: 5
- Temperature Stability: 4

Decell TRUST was designed for military use in helmets and limb protection applications.

*The higher the density score the less dense the material is (5 is the least dense material)
These D3O® comfort and cushioning solutions are developed for markets where impact energies are typically lower and where other performance properties, such as temperature stability and flexibility, are the key considerations.

SE004 can be engineered into structures and designs that offer unrivalled shock absorption and achieve a thinner, more detailed impact protection layer.

D3O® IA combines advanced polymer chemistry and manufacturing techniques to deliver unmatched impact protection properties to traditional TPR without compromising on dexterity or comfort.

The D3O® Formable Elastomer range has been developed for injection moulding, specifically consumer electronics cases.

D3O® powered by DuPont™ Hytrel® addresses the market need for products and applications that benefit from an increasingly stiff material at higher frequencies or rates.

*The higher the density score the less dense the material is (5 is the least dense material)